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LETTER TO THE EDITOR

The quantum Jeffreys’ prior/Bures metric volume element
for squeezed thermal states and a universal coding
conjecture

Paul B Slater
Community and Organization Research Institute, University of California, Santa Barbara,
CA 93106-2150, USA†

Received 8 May 1996

Abstract. Clarke and Barron have recently established that the (classical) Jeffreys’ prior yields
universal codes—ones which do relatively well (in the sense of relative entropy) no matter what
the true state. Twamley has recently computed the Bures metric—proportional to the quantum
Fisher information (statistical distinguishability) metric, as shown by Braunstein and Caves—for
squeezed thermal states. The volume elements of these metrics—that is, the quantum Jeffreys’
prior—are found to be simply the product of a function of the squeeze factor and a function
of the inverse temperature, the phase being irrelevant in this regard. A computational strategy
to find a universal coding using the quantum Jeffreys’ prior—previously implemented for the
two-level quantum systems—is then discussed.

The (classical) Jeffreys’ prior—widely used in Bayesian analyses—is defined as the square
root of the determinant of thed × d Fisher information matrix of ad-variate probability
distribution [1]. This matrix is the negative of the expected value of the Hessian of the
logarithm of the probability density. Recently [2, 3], in analogy to this definition, we have
considered the quantum Jeffreys’ prior to be the square root of the determinant of thed ×d

quantum Fisher information matrix [4–6] for ad-parameter set of density matrices. Here,
the symmetrized logarithmic derivative is used to compute the information matrix, due to
the general non-commutativity of observables in quantum mechanics.

The quantum Jeffreys’ prior has been found [2, 3] and normalized to a (prior) probability
distribution over: (1) the three-dimensional convex set of 2×2 (complex) density matrices;
(2) the five-dimensional convex set of 2× 2 (quaternionic) density matrices; and (3) a
four-dimensional convex set of 3× 3 density matrices, reducing to (1) for a fixed value
of a specific one of the four parameters. We have also computed [3] the 8× 8 quantum
Fisher information matrix for the eight-dimensional convex set of three-level (spin-1) density
matrices—using the parametrization suggested in [7]—but have been unable to compute its
determinant, without fixing at least four of the eight parameters.

In any case, however, it is possible—relying upon the recently demonstrated [8] simple
proportionality between the quantum Fisher information metric and the (natural) Bures
metric—to take the quantum Jeffreys’ prior for a class ofn × n density matrices (ρ) to be
proportional to the product of|ρ|−1/2 and∏

16i<j6n

1/(λi + λj ) (1)
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whereλ1, λ2, . . . , λn are the eigenvalues ofρ. The product of (1) and|ρ|−1/2 is then the
volume element of the Bures metric. This follows from the formula from Hübner [9] for
the Bures metric:

1

2

n∑
i=1

n∑
j=1

|〈i|dρ|j〉|2
λi + λj

(2)

by writing the metric in terms of a set of independent differentials (n − 1 of them for
the diagonal entries andn(n − 1) for the off-diagonal entries). Equation (1) can be
expressed either in terms of the complete (h) or elementary (e) symmetric functions of the
n eigenvalues by calculating the determinant of an(n − 1) × (n − 1) matrix, theij -entries
of which are eitherh2i−j or e2i−j . (This result, as applied to theh’s is given in [10] (p 29,
exercise 7). Ira Gessel (personal communication) has indicated that it must also hold for
thee’s since (1) is the Schur functions(n−1,n−2,...,1)(λ1, λ2, . . . , λn) and(n−1, n−2, . . . , 1)

is a self-conjugate partition [10, (3.5)]. One can then compute (1) from the characteristic
polynomial of ρ [11], without having to directly determine the individual eigenvalues (cf
[9]). Normalization, however, of the quantum Jeffreys’ prior over high-dimensional convex
sets may prove problematical.

An asymptotic (minimax relative entropy) property of the (classical) Jeffreys’ prior
has recently been established [12, 13; cf 14]. We have sought to extend these results
to the quantum domain, starting with the case of the two-level (complex) systems [15].
Computations have been performed that are supportive (but not yet probative) of the

following proposition. If one averages the 2n × 2n density matrices
n⊗ ρ over the three-

dimensional convex set (B) of 2×2 density matrices (ρ), then if the averaging is performed
using the quantum Jeffreys’ prior overB, the maximum overB of the relative entropy of
n⊗ ρ (n → ∞) with respect to the 2n × 2n averaged density matrix is minimized. In this
sense, Jeffreys’ prior would provide a ‘universal coding’ [12–14] of the two-level systems.
This minimax relative entropy then was conjectured to approach1

2 logπ − 2 log 2+ 3
2 logn

asn → ∞ [15].
The specific purpose of this letter is to report the quantum Jeffreys’ prior and its

properties for another class of density matrices—those for the (undisplaced) squeezed
thermal states. We rely upon recent results of Twamley [16]. These density matrices
are parametrizable in the form

ρ(β, r, θ) = ZS(r, θ)T (β)S+(r, θ) (0 6 β; 0 6 r; −π < θ 6 π) (3)

where

S(r, θ) = exp(ζK+ − ζ ∗K−)

T (β) = exp(−βK0)

ζ = r eiθ (4)

and

K+ = 1
2a†2

K− = 1
2a2 K0 = 1

2(a†a + 1
2)

[K0, K±] = ±K± [K−, K+] = 2K0. (5)

HereS(r, θ) is the one-photon squeeze operator,a is the single mode annihilation operator,
Z is chosen so that Tr(ρ) = 1, and(K0, K+) are the generators of theSU(1, 1) group.

The Bures metric can then be expressed—in diagonal form [17]—as either [16]

1

2
[1 + sechβ/2](dr2 + sinh2(2r) dθ2) + 1

64 sinh2 β/4
dβ2 (6)
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or, defining exp(−2u) = tanhβ/8,
1
2[1 + tanh2 u](dr2 + sinh2(2r) dθ2) + du2. (7)

The volume element (proportional to the quantum Jeffreys’ prior) associated with (6) is of
the product formf (r)g(β), where

f (r) = sinh 2r (8)

and

g(β) = (coshβ/4 cothβ/4 sechβ/2)/8 (9)

while for (7), the prior is of the formf (r)h(u), where

h(u) = (cosh 2u sech2 u)/2. (10)

The univariate functionf (r) can be normalized over the ranger ∈ [0, R] by dividing by

sinh2 R (11)

while the univariate functionh(u) can be normalized over the rangeu ∈ [0, U ] by dividing
by

U − (tanhU)/2. (12)

In figure 1 is shownf (r) normalized over the range [0, 5] and in figure 2,h(u), normalized
over [0, 5]. In figure 3 is showng(β), over the rangeβ ∈ [0, 5]. (We have not succeeded
in normalizing—through exact nor numerical integration—g(β) over ranges of the form
[0, B]).

Figure 1. Univariate marginal (f (r)) of quantum Jeffeys’ prior normalized overr ∈ [0, 5].

A phenomenonologically meaningful choice for the squeezing parameter cutoff (R)
might be the critical value [18]

rs = 1
2 log(2n + 1) (13)

where

n = [exp[ωβ] − 1]−1 (14)

is the mean occupancy andω, the angular frequency of a single-mode radiation field. For
r > rs, pairwise oscillations of the photon-number distribution arise [18].
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Figure 2. Univariate marginal (h(u)) of quantum Jeffreys’ prior normalized overu ∈ [0, 5].

Figure 3. Unnormalized univariate marginal (g(β)) of quantum Jeffreys’ prior overβ ∈ [0, 5].

Marian and Marian [19] have derived, besides, the usual quasiprobability densities,
the coherent-state, number-state, coordinate and momentum representations of the density
operator of squeezed states with thermal noise. Using such representations, we intend
to conduct analyses parallel to those reported in [15]. There,n-fold tensor products

(n = 2, 3, 4)
n⊗ ρ of the two-level density matrices (ρ) were averaged over the three-

dimensional convex set (B) of all such possible density matrices, using a one-parameter
family of probability distributions,q(u), −∞ < u < 1, for whichq( 1

2) is the (normalized)
quantum Jeffreys’ prior. The value ofu = Un was found for which the maximum overB of

the relative entropy of
n⊗ ρ with respect to 2n × 2n density matrices,ζn(u), was minimized.

The matricesζn(u) were obtained by averaging the
n⊗ ρ’s, using the probability distributions

q(u). It was found thatU2 ≈ 0.992,U3 ≈ 0.952 andU4 ≈ 0.912. This decreasing trend is
not inconsistent with the hypothesis—extending the results of Clarke and Barron [12, 13] to
the quantum domain—that limn→∞ Un = 1

2. Under such a hypothesis, it was argued in [15],
on the basis of the combinatorial structures observed, that the minimax relative entropy or
risk would, asymptotically, approach12 logπ − 2 log 2+ 3

2 logn. The (non-quantum) result
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of Clarke and Barron [12, 13] is that the ‘minimax risk’ assumes the form

log
∫

K

|I (θ)|1/2 dθ + d

2
log

n

2πe
. (15)

Here, θ is a d-dimensional vector of variables parametrizing a family of probability
distributions,I (θ) is the d × d Fisher information matrix andK is a compact set in the
interior of the domain of the parameters.

I would like to express appreciation to the Institute for Theoretical Physics for computational
support in this research.

Note added in proof. C Krattenhaler has found the asymptotic form of the relative entropy of
n⊗ ρ with respect to

ζn(u). For u = 1/2 (the quantum Jeffreys’ prior), it is

3

2
(logn − log 2) − 1

2
+ 1

2
logπ − 1

2
log(1 − r2) + 1

2r
log

(
1 − r

1 + r

)
+ O(1/n)

wherer is the distance ofρ from the origin in the Bloch sphere representation of the two-level systems.
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